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The influence of vacuum polarization on a confinement picture is discussed. The pair-production effects on
the potential between two external charges are analyzed in the Schwinger model. Depending on the order of
magnitude of the fermion mass, one obtains two clearly distinguished behaviors for the potential reflecting

screening or confinement. In exceptional situations one finds colorless “quarks.”

I. INTRODUCTION

There is an increasing consensus that quark
confinement will be an essential ingredient of any
future theory of strong interactions. Theoretical
work strongly suggests that quantum chromody -
namics (QCD) does exhibit confining properties.t+?
One possible way of understanding this is via the
formation of flux tubes by a mechanism dual to
that known to occur in magnetic confinement.?

The standard test for the existence of the linear
potential implied by those flux tubes® is the Wilson
loop criterion which usually is applied to the pure
gauge theory, quarks being considered as external
probes. One expects that if the quarks are very
heavy, freezing the vacuum in this way will not
affect the confining features of the theory, since
in this case there should exist a critical length on
the order of hadronic sizes below which pair pro-
duction of quarks is negligible. For sufficiently
large distances, however, polarization effects
will take over and destroy the rising-potential
picture, To get a more detailed understanding of
what could be the influence of polarization on the
confining properties of the potential, it is instruc-
tive to consider a gauge theory in two-dimensional
space-time where the flux-tube formation is kin-
ematic. As a consequence, the absence of “col-
ored” states is also automatic in two-dimensional
space-time. Indeed, consider a dipole state

|Dy=wpexp|ig [ @K@ |0y, (1)

where A is the usual vector-potential matrix and
P denotes path ordering. Since in the temporal
gauge the electric field E is the canonical momen-
tum conjugate to A , one notices that the expecta-
tion value of the Hamiltonian grows linearly with
the separation of the two quarks. This means that
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one cannot isolate particles carrying color,

Of course, a dipole state of the form (1.1) will
have a growing energy, independent of the space-
time dimensionality. However, in higher dimen-
sions the real dynamical problem, related to flux-
tube formation, is to find out whether this is the
lowest-energy state compatible with Gauss’s law.
By staying in two-dimensional space-time, we
avoid this dynamical problem and can concentrate
on the effects of vacuum polarization on the con-
fining picture,

For massive quarks we expect a linear rising
potential up to distances of the order of L=M/g?
where g is the coupling of the gauge field to the
quarks. For very heavy quarks this should lead
to the usual confinement picture where the ob-
servable colorless particles will manifest them-
selves as bound states formed out of a well-de-
fined number of quarks. For vanishing mass on
the other hand, color screening is expected to set
in immediately,* since here no energy is required
to create quark pairs, and the physical states are
rather collective excitations analogous to plas-
mons. Thus, the absence of colored states can
have rather different origins. In Sec. II we will
illustrate these mechanisms using the Schwinger
model as an example.

II. MODEL COMPUTATION .

In this section we want to compute the potential
between two static charges @ and —Q separated
by a distance 2L in the Schwinger model.® The
corresponding Hamiltonian in boson-transformed
form is given by®

=1 fdxlii)2+(\72)2+ iz - ¢)?

+IZ—:[1 —cos(2ﬁz;)]}, (2.1)
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where p=e/vw and
o) = VT2 ol + LYAL - ).

The Hamiltonian (2.1) corresponds to the massive
Schwinger model for vanishing chiral angle (back-
ground field of Ref. 7). The potential between
those external charges is given by

H(L)=mwin(zp|HIzp). (2.2)

The behavior of the potential for large L was found
in Ref. 6 to approach a constant for values of @
which are integer multiples of e. This is clearly
an effect of the dominating role of vacuum polar-
ization for large separations. Here we wish to
obtain a more detailed picture of the behavior of
H(L) for all'L’s. Since we do not hope to solve

the quantum-mechanical problem exactly we will
approximate it by the following classical one:

H(L)=min fdt{%(%q;)z -Vq, t)] ) (21-3)

where we have replaced x, by ¢ and = by ¢ for ob-
vious reasons, and

Vig,t)=-3 p?lg - ¢(1)]*
..%—j—[l —cos(2V7q)]. (2.4)

To obtain H(L), Eq. (2.3), we have to consider the
motion of a particle in the potential (2.4) subject
to the boundary condition that for ¢~ +« it is loc-
alized at ¢=0 in order to ensure that the inter-
particle potential H(L) be finite. During its mo-
tion, the particle changes at = ~L from the po
tential V,, to a new potential V, where the poten
tials are given by '

2
Volg)= -4 ;ﬁ(q -ﬁg)

e

—IZI—; [1 -cos(2Vq)],

(2.5)
Vo(q)"' Vo(q) l Q=0

and reverses its motion at £=0.
In computing H(L) we find it convenient to make
use of the relation

dH(L)

L= —2e(l)= -2uq¢(-L)Q+Q*, (2.6)

where €(L) is the energy of the particle when it
moves on the potential V,. Equation (2.6) follows
from the minimal action principle since the
boundary conditions are L independent.

Although H(L) is trivially calculable in the mass-
less Schwinger model (M =0), we find it useful to
first illustrate the procedure for obtaining H(L) in

v VT2 VT

—gv

FIG. 1. Potentials V (dashed line) and Vg (solid line)
for M=0. Heavier line with arrow represents particle
motion,

this case.

(@) Case M=0. The potentials for this case are
represented in Fig. 1. At time /= -~ the particle
starts rolling down the potential hill V,,, moving
from the origin to the right with zero total energy.
At time ¢= ~L it is suddenly subjected to the new
potential V, moving now with energy €(L). The
total time it spends on potential V, is given by

2L zjqw)d ' ! 2.7)
e i {2[e - V(g ]F'? )
From (2.7) and (2.6) we obtain the well-known re-
sult® s

H(L)=%ZI(1 _ e, (2.8)

H(L) can in no way be regarded as a confining po-
tential, but rather corresponds to the immediate
onset of the screening process. This total screen-
ing is seen to occur for any value of Q.

(b) Case M +0. An inspection of the potentials

FIG. 2. Potentials V; (dashed line) and V (solid line)
for M>e, 6=0.
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V, and V, shows that in this case H(L) approaches
a finite value as L -« only if the charge @ is
quantized (@=ne) in agreement with Ref. 6. Note
that the growth of H(L) for nonquantized charges
is not to be taken as an indication for confinement
since we are interested in probing the system with
physical charges. In what follows we shall, there-
fore, consider only the case of integral charges,
in particular @ =e, and M > u, where one does
expect confining features.

The qualitative behavior of the corresponding
potentials (for M3/ p®=~10) is depected in Fig. 2.
There exist three classes of solutions satisfying
the correct boundary conditions. For the first
class (I), the particle moves between the origin
and a turning point which approaches for L -« the
local maximum of V. This corresponds to 0 <L
<% and gives rise to a linearly r1smg branch of
H(L) with 0 S L <o

H(L)= ( —ME)N"LZL+ =(1 = e™24L), (2.9)
The second and third class (I, ITI) of solutions only
exist for (1/M) In(M?/ u?) s L <=, with the “jump-
ing point” ¢(~L) lying in the ranges [Vwu?/2M2,
q.] and [q,,V7/2], respectively.

From Eq. (2.6) and the above characterization
" of classes II and III it is clear that the energy H(L)
corresponding to class II is higher than that of
class III. For the solutions of class II, H(L) is
of the order of M (roughly the mass of a soliton)
and up to corrections of order e/M is given by

B(L)= 21 - geur). (2.10)

It is clear that the true potential H(L) is obtained
by going smoothly from the branch I to the branch
1II (see Fig. 3) at the intersection point L ~4M/
72u2, thus guaranteeing that the interparticle po-
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FIG. 3. Interparticle potential H(L) in the three
cases (a), (b), and (c). Dashed lines represent meta-
stable states of the polarization cloud.
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FIG. 4. Potentials V, (dashed line) and Vg (solid line)
for M >e, 6=m.

tential has the smallest possible value for every
L. As clearly seen from Fig. 3, for M > u there
exists a rather large region within which the po-
tential is linearly rising. In the semiclassical
approximation, this confining region is sharply
distinguished from the domain in which pair pro-
duction starts to become important.

(c) Case 6+0. So far, we considered the mass-
ive Schwinger model for the chiral angle 6=0.
The general case corresponds to shifting the argu-
ment of the cosine by a constant angle 6. One
finds that for all 6 #7, the results closely parallel
the preceding ones. For §=7, because of spon-
taneous symmetry breakdown (for M > p), kink
states make their appearance, and one expects a
breakdown of the confining picture. Indeed, as
clearly seen from Fig. 4, there is in this case an
additional degeneracy between the maxima of the
two potentials.

Since the maxima are separated by a distance of
only V7 u?/M?, the motions in the equivalent me-
chanical problem minimizing the interparticle po-
tential H(L) will take place between these two
maxima. In this case, just as in the massless
Schwinger model, one finds

H(L) ~— —(1 e ML), (2.11)

Comparing the above expression with the pre-
vious ones, one sees that not only is there no
confining potential, but that screening effects are
more violent than inthe massless case. This leads
us to interpret the above-mentioned kink states as
colorless “quarks.” Note that in contradistinction
to the Coulomb potential of Ref, 7 which varies
smoothly with 8, our H(L) clearly distinguishes
6= from all the other angles.
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III. CONCLUDING REMARKS

Our model computations clearly show that an
absence of “colored” states cannot necessarily
be interpreted as a result of confinement in the
usual sense. The confining theory should corre-
spond to the situation found in case (b) where we
have a potential which increases linearly up to
distances of the order of L ~M/e?, whereas the
size of a “quark-antiquark” bound state can be
estimated to be of the order (e/M)*/°L, which for
M > e is much smaller than L. In such a case
we can understand a neutralization of “color” via
the formation of bound states (hadrons). It is
clear that the parameter M should be interpreted
as being of the order of the “quark” mass, since
for large M/e it sets the scale of the hadronic
masses. For distances larger than the critical
length, polarization effects become important and
the whole potential picture breaks down through
hadron formation. This is to be contrasted with

-the situation for the massless Schwinger model
where we do not expect such a potential bound-
state picture to hold and where “color” neutral-

ization occurs via screening. It is interesting to
note that even for heavy quarks, if 6=7, one does
not have a confining picture but rather a screen-
ing one. In this situation we are led to interpret
the kink states as colorless quarks. This inter-
pretation is supported by the fact that by coupling
flavor to the Schwinger model one finds kink states
which carry all the quantum numbers of the quarks
except for color,”*° If the appearance of such
colorless quarks is not a two-dimensional path-
ology, then one might have to worry about the
possibility that vacuum polarization effects play
an important role also in four-dimensional QCD.
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